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Transition amplitude calculations for one- and two-photon absorption
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Abstract

NWe apply known many-body perturbation techniques to the calculation of one- and two-photon transition intensities within the f
configurations of lanthanide and actinide ions. We demonstrate how to construct linked expressions to third order. For one-photon
electric–dipole transitions the only one-electron spin-independent effective operators needed are those of even rank.  1998 Elsevier
Science S.A.
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1. Introduction elements of any effective operator, provided that care is
taken with the normalisation of the states.

The theory of one-photon absorption in rare earth Hurtubise and Freed [10] have constructed a perturba-
compounds was developed by Judd [1] and Ofelt [2] in tion expansion for dipole moment operators relevant to
1962, and has become known as the Judd–Ofelt theory. one-photon absorption. They have verified that this expan-
This theory was extended to the case of two-photon sion is linked up to third order.
absorption by Axe [3] in 1964, who considered only the Burdick and Reid [11,12] pointed out that the two-
second-order terms. More recently, it has become possible photon calculations of Judd and Pooler [5] would lead to
to observe transitions for which the second-order terms unlinked terms in a many-body expansion (the symptom of
give an unusually small contribution, so that it has been this is the appearance of a factor of N in Judd and Pooler’s
necessary to extend the calculations to third order and Eq. (16)). They claimed instead that it was possible to
higher [4]. Judd and Pooler [5], Burdick, Downer and carry out a calculation analogous to the standard calcula-
Sandar [6] and Smentek–Mielczarek and Hess [7] have tion, but which incorporated the dipole moment operator
carried out calculations involving these higher order terms. from the standard theory of two-photon transitions in place

However, at third order and above the number of of some of the time-independent perturbation operators.
possible expressions in the perturbation expansion be- In this work we review the calculations of Hurtubise and
comes large, and it is important to keep careful track of Freed and of Burdick and Reid and comment on the
them in order to avoid overcounting or missing terms. application of many body techniques to rare-earth transi-
Many-body perturbation theory is highly developed and tion intensities. We also comment on the relationship to
provides a systematic method of doing this. It has been an phenomenological models [13]. One knows from time
important computational tool in atomic, molecular, and reversal and hermiticity symmetries that the (one particle)

Ncondensed matter physics. A key concept in such calcula- crystal field within an f configuration is parameterised by
tions is the linked cluster theorem which was proven by only even rank operators [14]. We argue that the same
Goldstone in 1957 [8]. The linked cluster theorem implies result applies to the parameterisation of one-photon electric
that unlinked terms must cancel. If they did not, then dipole transitions.
energies would have unreasonable dependencies on the
number of particles in the system. Brandow has proved [9]
that the linked cluster theorem holds for the matrix

2. Model spaces and true wavefunctions

* We use a notation which is similar to that of HurtubiseCorresponding author. Tel.: 164 3 364 2548; fax: 164 3 364 2469;
e-mail: M.Reid@phys.canterbury.ac.nz and Freed. The Hamiltonian is partitioned into
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H 5 H 1V (1) expression (13) is third order. An alternative is to refer to0

(11) as first order in V, and to (13) as second order in V, as
We shall represent an exact state (which is the eigenfunc- Hurtubise and Freed [10] do in their various papers.
tion of the complete hamiltonian) by ukl. Thus The exact states in expressions (7) and (8) are time-

independent, so we may calculate them using time-in-H ukl 5 E ukl (2)k

dependent perturbation theory. Brandow [9,16] and Hur-
Eigenstates of H , which are not necessarily eigenstates of0 tubise and Freed [15] have provided the underlying algebra
H, are denoted by uk9l. Thus for calculations of this sort.

(0)H uk9l 5 E uk9l (3)0 k9

We define a model space, with projection operator P. This 3. One-photon absorption
Nwill usually be the f configuration in applications of

interest here. In this space the effective Hamiltonian, h, has We may expand the exact states in expression (7) above
the same eigenvalues as the full Hamiltonian H, with ˆusing the k ’s of the previous section, which gives us
eigenstates ukl . That is,0 †ˆ ˆk f uk Dk uil (9)0 0hukl 5 E ukl (4)0 k 0

†ˆ ˆWe note that the operator k Dk is Hermitian order byThe projection operator for the orthogonal space is Q.
order [15] and if it is also time-reversal even (e.g., theIn many MBPT applications only the energies are of
electric dipole moment) then standard arguments [18,19]interest, and the normalisation of the states is not im-
imply that the one-electron spin-independent part consistsportant. Consequently, the normalisation chosen for many
of even-rank tensors. However, it is possible to haveMBPT calculations is the intermediate normalisation con-
two-body, or spin-dependent operators with odd rank, as invention ( kiu jl 5d , kiu jl 5d ), as this simplifies the0 0 ij 0 ij the case of the correlation crystal field [18].calculation. However, in the calculation of expectation

Expression (9) is exact. We may now use perturbationvalues or transition intensities, it is highly desirable to use ˆtheory to expand k to any desired order. The result ofnorm preserving transformations [15] so that kiu jl5d .ij carrying out this expansion isBrandow has shown [9,16] that the norm-preserving
transformation between the exact and model states is given k f uDuil 5 k f uDuil (10)0 0
by

k f uV uk9lkk9uDuil0 0ˆ ]]]]]1 O (11)uil 5 k uil (5) (0) (0)0 E 2 Ek9[Q f k9

where
k f uDuk9lkk9uV uil0 0† 21 / 2ˆ ]]]]]1 O (12)k 5 V(V V ) , (6) (0) (0)E 2 Ek9[Q i k9

and V is the wave operator used by Lindgren and
k f uV ur9lkr9uDuk9lkk9uV uil† 21 / 2 0 0Morrison [17]. The (V V ) factor is necessary to ]]]]]]]1 O O (13)(0) (0) (0) (0)(E 2 E )(E 2 E )r9[Q k9[Qensure that the full wavefunction uil is normalised. f r9 i k9

In the following we use the symbol D to represent a
k f uV ur9lkr9uV uk9lkk9uDuil0 0general multipole operator (usually the electric dipole ]]]]]]]1 O O (14)(0) (0) (0) (0)(E 2 E )(E 2 E )r9[Q k9[Qoperator). The transition amplitude for one-photon absorp- f r9 f k9

tion is proportional to
k f uDur9lkr9uV uk9lkk9uV uil0 0
]]]]]]]1 O O (15)(0) (0) (0) (0)k f uDuil (7) (E 2 E )(E 2 E )r9[Q k9[Q i r9 i k9

Similarly, the transition amplitude for two-photon absorp- k f uV u j9lk j9uV uk9lkk9uDuil0 0tion is proportional to ]]]]]]]2 O O (16)(0) (0) (0) (0)(E 2 E )(E 2 E )k9[Q j 9[P f k9 j 9 k9

k f uD uklkkuD uil k f uD uklkkuD uil2 1 1 2
x]]]]] ]]]]]O 1O (8) k f uD uk9lkk9uV u j9lk j9uV uilE 2 E 1 "v E 2 E 1 "v 0 0i k 1 i k 2k k ]]]]]]]]2 O O (17)(0) (0) (0) (0)(E 2 E )(E 2 E )k9[Q j 9[P i k9 j 9 k9where "v , "v are the energies of the two photons. This1 2

formula may also be applied to Raman scattering if a k f uV uk9lkk9uV u j9lk j9uDuil1 0 0
] ]]]]]]]2 O O (18)minus sign is associated with the "v of the outgoing (0) (0) (0) (0)2 (E 2 E )(E 2 E )k9[Q j 9[P f k9 j 9 k9photon.

We shall define the order of any particular term to be the k f uDu j9lk j9uV uk9lkk9uV uil1 0 0total number of D and V operators in its numerator. Thus ] ]]]]]]]2 O O (19)(0) (0) (0) (0)2 (E 2 E )(E 2 E )k9[Q j 9[P j 9 k9 i k9expression (11) is a second order expression, while
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Note that the ‘‘normalisation’’ terms (18) and (19) arise k f uDukl kkuDuil kiuV uil0 00 0 0 0† 21 / 2 ˆ ]]]]] ]]]]]2O (25)from the expansion of the (V V ) component of k. F G(0) (0) (0) (0)E 2 E 1 "v E 2 E 1 "vk i k i kThus we see that to first order in V, the expansion may be
generated by replacing one of the V ’s by a D in the k f uV ur9lkr9uDukl kkuDuil0 00 0

]]]]]]]]]1O O (26)standard perturbation theory expansion for the effective (0) (0) (0) (0)(E 2 E 1 "v)(E 2 E )k r9[Q i k f r9fhamiltonian. However, this is not the case at higher order.
Note also that the two expressions (11) and (12) are the k f uDur9lkr9uV ukl kkuDuil0 00 0

]]]]]]]]]1O O (27)standard Judd–Ofelt [1,2] expressions. In the case where (0) (0) (0) (0)(E 2 E 1 "v)(E 2 E )k r9[Q i k k r9kthe model space is degenerate (which is the obvious choice
Nfor the f configuration) the two denominators are equal. k f uDukl kkuV ur9lkr9uDuil0 00 0

]]]]]]]]]1O O (28)In the context of the present work it is seen that Judd’s (0) (0) (0) (0)(E 2 E 1 "v)(E 2 E )k r9[Q i k k r9kclosure approximation is equivalent to the truncation of the
expansion at first order in V. Relaxation of this closure k f uDukl kkuDur9lkr9uV uil0 00 0

]]]]]]]]]1O O (29)approximation is equivalent to evaluating higher-order (0) (0) (0) (0)(E 2 E 1 "v)(E 2 E )k r9[Q i k i r9iterms in the model space calculation.
Note that in this expansion terms (24) and (25) have arisen
from the expansion of the exact energies in the de-
nominator of expression (8). However, there are no terms4. Two-photon absorption
equivalent to terms (18) and (19) in the expansion of the
one-photon transition rate above. This is because theseIn the case of two-photon absorption, we use expression † 21 / 2 ˆterms arise from the (V V ) factor of k, which must be(8) to calculate the transition amplitudes. Here we shall
of at least second order in V, and therefore cannot have anyconsider only transitions within the same shell, so that the
contribution to two-photon terms of lower than fourthmodel spaces for the initial and final states are the same.
order (second order in V ).(If we wish to consider inter-shell transitions, such as

The expansion (23)–(29) can be simplified. In par-f→d, then the initial and final states will have separate
ticular, with some manipulation of the denominators andmodel spaces.)
summations, we may combine terms (24), (27) and (28).Expression (8) has exact energies in its denominator. It
The resulting combined term isis necessary to convert these energies into zero-order

energies if the linked cluster theorem is to work order-by- k f uDu jl k juV ukl kkuDuil0 00 00 0
]]]]]]]]]]]O (30)order. Therefore we expand the exact energies using (0) (0) (0) (0)(E 2 E 1 "v)(E 2 E 1 "v)kj i j i k

(0) (1) (2)E 5 E 1 E 1 E 1 ? ? ? (20)i i i i where both k and j run over the entire Hilbert space. We
may also convert term (25) so that it contains a summation21Thus we may expand (E 2E 1"v) to givei k over basis states in place of the uil kiu. The resulting term00

is1
]]]]5E 2 E 1 "v k f uDuk9lkk9uDu j9lk j9uV uili k 0 0

]]]]]]]]]]]2O . (31)
2 (0) (0) (0) (0)(1) (1) (2) (2) (1) (1) (2) (2)E 2 E 1 E 2 E 1 ? ? ? E 2 E 1 E 2 E 1 ? ? ? (E 2 E 1 "v)(E 2 E 1 "v)k i k i k i k i k9 j 9 j 9 k9 i k9]]]]]] ]]]]]]1 1 1 1 ? ? ?S D(0) (0) (0) (0)E 2 E 1 "v E 2 E 1 "vi k i k

]]]]]]]]]]]]]]] The completeness theorem allows us to replace any(0) (0)(E 2 E 1 "v)i k
summation over model functions o u jl k ju with a corre-j 00

(21) sponding summation over basis functions o u j9lk j9u. Thisj 9

means that all of the summations over the entire Hilbert(1)Now, E is just kkuV ukl . We are now in a position tok 0 0 space in the expansion (23)–(29) and in terms (30) and
expand expression (8). For brevity we consider the situa-

(31) may be converted between model and basis function
tion v 5v 5v, in which case there is only one term. To1 2 summations as is convenient.
third order, this expansion is

Burdick and Reid [11,12] have considered the case
Nwhere the model space is f and D is the electric dipolek f uDuklkkuDuil

]]]]O (22) operator. In the particular case which they investigatedE 2 E 1 "vi kk some of the terms in expansion (23)–(29) are eliminated.
The expressions used by Burdick and Reid are in agree-k f uDukl kkuDuil0 00 0

]]]]]5O (23) ment with our derivation for that particular case. However,(0) (0)E 2 E 1 "vk i k in general their implication that it is possible to generate
the transition rate expansion by all permutations of replac-k f uDukl kkuDuil kkuV ukl0 00 0 0 0 ing two of the V ’s with D’s in the energy expansion is not]]]]] ]]]]]1O (24)F G(0) (0) (0) (0)E 2 E 1 "v E 2 E 1 "vk i k i k correct.
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†Often we will want to consider separately the case ˆ ˆk Du jlk juDk
]]]]where the projection of ukl is in the model space P and the O (32)H 2 E 1 "vjjcase where it is not in the model space. This should not

present any special problems, provided that we are careful is the effective operator for two-photon absorption and
about the choice of our model and orthogonal spaces. consequently must also be linked. However, the derivation

When the projection of ukl is in the model space it will of a systematic expansion of this operator to all orders is
generally be more convenient to perform the calculation as not straightforward.
if it were a product of two one-photon processes (using
expression (8) directly) since then we will be able to treat
more easily any resonance effects which may occur. 6. Conclusions
(These resonance effects are dependent upon the exact
energies in the denominator.) In practice this will involve We have constructed a consistent perturbation theory
the use of the expansion for one-photon transition rates derivation for one- and two-photon absorption transition
(10)–(19) to calculate each one-photon part of the expres- rates. This is based on the expansion of the exact states in
sion. the expression for the transition moments. In general the

Conversely, when the projection of ukl is in the ortho- one- and two-photon transition moment expansions cannot
gonal space, it will be most convenient to use the be generated by simple substitution of some of the V
expansion derived above for two-photon absorption transi- ¨operators by D in the Rayleigh–Schrodinger energy expan-
tion rates. This will avoid the direct calculation of exact sion. While the operator substitution works for first and
energies except where it is absolutely necessary (as in the second order terms, it breaks down for third and higher
resonance case outlined above). order terms.

The determination of the restrictions on the ranks of We have argued that the one-electron spin-independent
parameters is quite complicated and depends on whether or part of the effective operator for one-photon electric–

Nnot the two-photons have the same energy. Note that, dipole transitions within the f configuration consists only
unlike the expression for one-photon absorption, the of even-rank tensors. This has important implications in
expression for two-photon absorption is not necessarily the phenomenological modelling of transition intensities.
Hermitian. However, if both photons have the same energy
then only even rank one-electron spin-independent terms
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